时间:2023-02-06 13:10:17 | 浏览:366
AI行业又一次走到了十字路口。高昂的算力成本,利如纸薄的定制化商业模式,让AI公司集体深陷「负利润」的窘境。
企业往往寄希望于AI的能力,实现数字化跃迁,但作为新一代基础设施,AI行业本身也遭遇了新的难题:算法从研发到落地部署都需要巨额成本的投入,且大量的算法在应用落地上并不顺利。
如果从源头来看,云计算或许就是一剂良药,因为它能提供更低成本的算力和低门槛的开发服务,算法研发能力不足的企业还能直接在云上调用云厂商提供的算法,无需重复造轮子。
作为知名的市场分析机构,Gartner早早嗅到了这一趋势,他们从2020年就开始发布《云AI开发者服务关键能力报告》,在Gartner看来,AI与云的结合将愈加密切,AI云服务的能力也将成为AI产业的重要指标。
令人欣慰的是,中国企业已经压中了这一趋势,在今年的报告里,阿里语言AI技术高居全球第二,超越亚马逊AWS、微软等企业,正式进入世界第一梯队。
也正因如此,AI行业的前景依旧被广泛看好。Gartner报告提到,到2025年,70%的新应用程序将集成AI模型,而云AI服务能降低AI应用的开发门槛。这意味着云计算将成为阵痛期AI的最大变量。
给AI兜底的,为什么会是云?
早在2017年,学术界和工业界在最具影响力的AI顶会CVPR上就对深度学习的问题展开了激烈的讨论。
讨论的焦点在于,深度学习的“大数据+大算力”范式需要巨大的成本支撑,这必然成为AI商业化的最大阻力。
“深度学习确实在语音、图像识别等数据中,比传统的AI方法更精准,这也是它成为引领第三波AI浪潮的关键,只不过深度学习是把双刃剑,它对燃料(算力、数据、能耗)的消耗,尤其是对算力的需求,远超传统方法。好比以前只吃两个馒头就能活下去,现在为了活得更好,却又受到食材的限制,只能选择天天吃昂贵的和牛。虽然更有营养,但这显然不可持续。”多位AI专家告诉雷峰网。
由于AI的计算成本和能耗成本一直居高不下,在不少注重效益的研究者眼里,AI深度学习一度成了野蛮和暴力的代名词。
2012年,谷歌利用16000块芯片,让AI观看数百万段YouTube视频来识别出猫,即便如此仍错误百出,还不如人类眼睛的一瞥高效。
2016年,AlphaGo击败围棋冠军李世石的人机大战中,AlphaGo每局棋需消耗约100万瓦的电能。相比之下,人脑消耗的功率仅20瓦,只有AlphaGo的5万分之一。
2018年之后,Transformer以及Bert等催生了预训练大模型的诞生,虽然让AI的性能变得更强,但所需的算力也大幅攀升。专门搭建一个这样的集群,对于大部分中小企业来说是难以承受的。
「算力」的供不应求,让其成为整个AI领域的稀缺资源。这也是不少学术界AI大牛纷纷涌入谷歌、微软、阿里等大型科技企业的主要原因,这类企业拥有丰富的业务场景,且有近乎取之不尽的算力资源。
AI所面临的问题还不仅于此,在商业落地过程中:企业不得不为每一个场景定制专属解决方案,这无形中增加了企业的开发成本,利润也因此被压缩。
早期的创业公司都迷信于“研发SDK,先标准化,再规模化,薄利多销,以量取胜”的商业设想。但现实很骨感,当AI公司们拿着SDK冲进行业里才发现,习惯了重型定制化贴身服务的B端客户们,需要的不是单个的开发包,也不具备集成SDK的能力,他们需要的是一套定制化的解决方案。一套SDK包打天下的梦想就此破灭。
SDK走天下梦碎后,AI公司们开始从轻变重,走高度定制化解决方案的路子。但充满个性化定制的项目制模式,极易让企业滑进亏损的漩涡——获客周期长、实施成本高、重人力交付……成本的高企导致利润微薄,甚至一不小心做得越多,亏得越多。
标准化美梦易碎,定制化困局难解,AI企业在商业落地上左右为难。
事实证明,由算力成本和项目成本制造的两条后腿,正在让AI步履蹒跚。
而要卸下这两条后腿,就要打破固有思路,走上一条新的道路。专家们向雷峰网分析道,顶尖高校和头部科技公司现在的探索方向就是:从基础理论层面,用创新算法让AI本身变得更精益、更聪明;在工程层面,则需要让AI研发的成本变得更低。
毫无疑问,AI的成本问题,算力是最大的症结之一,也是破局的最大突破口。
通过算力集群的规模化,降低单位算力成本,是一条清晰的、具有一定可行性的道路。
在早期,AI所需算力并不高,CPU足以应对。但随着深度学习时代的到来,高质量的AI算法背后往往有惊人的数据量,此时训练所需的数据,规模已远超当年,更“强悍”的GPU逐渐登上历史舞台,成为AI算力的主流。
而当深度学习逐渐加深,模型的规模越来越大,单个GPU已无法满足算力。这时候,GPU并行的算力集群就显得尤为重要。大规模的算力集群,不仅能有效降低GPU采购成本,还能通过集群优势提升计算性能。
但此时新的问题又浮现了:有资源≠天然就用得好资源。如果企业没有合理高效的资源管理,GPU并行的算力集群自身属性再强,也无法自动锻造出优质AI大模型,更无从承载一个体验尚佳的AI应用。企业如今所面对的AI算力困境,包含着众多琐碎痛点:
如果没有算力线性扩展能力,100台机器可能还比不上1台机器的性能,大量的时间就会消耗在非计算开销里。
如果没有提升资源利用率的能力,昂贵的GPU集群很容易利用率不足10%。
业务发展速度难以预测,项目来了需要快速投入,等线下购买到资源,很容易错过机会窗口。
GPU卡故障率高,企业要腾出手来处理IaaS运维等苦活、累活。
GPU几乎半年更新一代,如果随时更换成最新型号,成本居高不下,旧卡又会被闲置。
此时,云上开发AI这一方案被摆上桌面,云计算本身具有的弹性、共享性和互通性等特性正与这些痛点匹配。企业可以借助云计算随时随地按需灵活扩缩容,进而提升算力效率、降低AI研发成本,基础设施层的运维等问题也可以交由更专业的云厂商处理。
这让企业在AI领域模型越演进越复杂,算力需求越来越强的大背景下,可以扬长避短,充分利用市场上已有的技术红利去自我赋能,提升自身业务迭代效率。
以阿里云为代表的国内互联网云厂商,早已提前布局,并将这一系列技术对外服务。
阿里云张北数据中心,可容纳百万台服务器
值得一提的是,不同于AI独角兽们专注to B、to G,这批提供云AI服务的互联网云巨头,自身往往拥有海量的场景业务,可以使算力集群得到高饱和使用,分摊GPU的折旧成本,从而避免GPU集群算力闲置的问题。
这一做法,与谷歌的案例有异曲同工之妙。谷歌前CEO施密特曾谈到,谷歌搜索之所以能在竞争中占有优势,关键因素之一在于成本低。
“Google的运营成本只有微软和雅虎的几分之一,一次搜索服务的成本只有零点几美分。节省下来的钱,Google可以购买更多的服务器、提升运算性能,如此一来,在与竞争对手相同的单位价格下,Google可用更多的硬件和算法,实现更好的搜索质量。”
真正一流的技术和科技公司,最先应该做的事是利用技术实现自身的降本增效,只有把生产要素的成本降下来,才能做到真正意义上的进入行业。
这种通过降低自身生产成本,提升计算资源的利用效率,把边际效应最大化,用最低的成本,走向规模化应用,这是科技产业落地发展的最佳路径。
除了算力问题,云AI服务也可以有效降低AI应用的开发门槛。以阿里为例,其机器学习平台PAI、达摩院研发的基础算法模型以及各种训练的加速框架等,从低门槛、全链路角度出发,高效满足了AI算法的开发需求。
跳出技术层面,在商业层面,云计算也在帮助AI产业加速破局。
目前国内AI产业主要有三条演进路径,从项目制出发:一条是最难获取高利润的多行业拓展模式,为了快速铺大摊子、做大规模,或者寻求业务突破而进入到金融、医疗、零售等数个领域,多线作战;一条是专注于一个垂直行业,把方案和服务做深做透,进而寻求在某一领域里实现平台化;还有一条是先聚焦于算法的打磨,做好算法的产品化,再依托云平台将算法对外服务,并用云平台的基础设施能力帮助企业研发算法。
国内AI产业演进的三条路径
而以阿里云为代表的头部互联网云厂商,在AI领域正朝着最良性的第三条道路迈进。
这种模式的好处在于,基于云平台的底座,不仅可以免去大部分本地化部署的枷锁,还能提供低成本的自研算法研发,快速为算法研发能力弱的企业服务,例如达摩院研发的视觉、语音、NLP等算法就在阿里云上对外服务。同时,云上的计算、存储、网络、机器学习平台等还能为具备算法研发能力的企业提供AI研发和落地的全链路支持。
这条将云与AI完美结合的路径,已经初有成效。以毫末智行为例,这家公司将算法训练任务放到阿里云上,利用后者的对象存储OSS和小文件存储CPFS,可实现海量数据冷热分层存储和高效的数据流通,基于弹性GPU实例在机器学习平台PAI上进行云上分布式模型训练,吞吐性能提升110%,模型成熟度在短时间内大幅提高。据介绍,这样的训练效率最高可提升70%,整体成本降低约20%。
过去十几年里,云计算凭借在算力成本和商业上的双重优势,以DNA复制般的速度进入到各行各业,如今,其在通用计算领域中已被验证过的价值正在被复制到AI领域,助力AI冲破落地瓶颈,实现万千普惠。
Gartner也毫不掩饰对这一趋势的预判,其最新的AI云服务报告指出,到2025年,人工智能软件市场规模将达到1348亿美元,而云AI服务是其中不可或缺的核心推力之一。
事实上,回顾半个多世纪里人工智能产业一路走来的潮起潮落,每一次低谷崛起都伴随着某一新变量带来的突破。如今,云计算正在成为眼下被寄予厚望的最大变量,这一次,将AI产业推向正轨的责任被使命般地交到了云厂商的肩上。雷峰网
人工智能(AI)技术飞速发展,未来会给中小学教师带来以下几大挑战:一、人工智能(AI) 技术依托大数据,能对整个教学活动做出更加有效和更加高效的评估,教师必须熟悉这些新方法,且能有效地解释和使用人工智能(AI)给出的结果并指导学生的学习。二
今天这篇想谈谈,AI人工智能生成的作品。因为这些AI作品,有些已经达到了艺术创作的水准,如果不说是AI做的,完全会以为是个人原创作品,甚至很有成为IP的潜力。首先是一篇报道引起了我的关注:今年8月,在美国科罗拉多州一个博览会的数字艺术评选中
AI胃口太大,人类的语料数据已经不够吃了。来自Epoch团队的一篇新论文表明,AI不出5年就会把所有高质量语料用光。要知道,这可是把人类语言数据增长率考虑在内预测出的结果,换而言之,这几年人类新写的论文、新编的代码,哪怕全都喂给AI也不够。
作者 | 刘雨洁、王与桐编辑 | 石亚琼2022 年的热门词汇有什么?AIGC 当之无愧位列其中,甚至将名列前茅。从 5 月的 Disco Diffusion 和 DALLE2 引起的 AI 作画潮流,到 11 月的 chatGPT 在一周
(观察者网讯) 当地时间1月31日,经过美国与印度高级官员连续两天的洽谈,美国白宫当天公布了旨在提升美印战略伙伴关系的“美印关键和新兴技术倡议”(iCET),其中强调双方政府、企业界和学术界将致力于在人工智能(AI)、通信、半导体、航空航天
阅读前,先思考:AI在哪方面无法超越人类?AI能在营销或品牌服务中的哪些要点上发挥作用?近些年我一直在研究互联网的计算广告,市场上缺乏对这个领域的系统性介绍,所以我还写过一本计算广告领域的书,并有幸得到互联网行业的认可。今天我想和大家探讨一
来源:半月谈机器人取代流水线工人、快译机取代翻译、虚拟主播取代主持人、智慧医疗取代放射科医生……随着人工智能技术的发展,其对就业的影响日益明显。一些不需要创造力的工种,或者一些需要长期经验积累的岗位正出现被人工智能替代的迹象。相关预测显示,
近年来,“云计算”(英文cloud computing)的概念在科技界,尤其是电子圈非常火爆;云计算已经成为当今的热词,同时也日益成为新时代科技的象征。那么,云计算是什么?它到底有什么用呢? 下面就简要地回答这些问题。云计算(图片源自网络)
云计算现在已经是一个耳熟能详的概念了,很多人理解的云计算,就是把算力放到网上,需要的时候去网上调用。但其实云计算最核心的一点是要让算力本身可以像电力一样作为各行各业的基础设施,能够被即插即用。算力与电力相比并不是一个实际的东西,而是一个比较
云计算概念的定义 云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络服务(即随时随地接入可接入),进入可配置的计算资源共享池(包括:网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,只需投入很少的管理工作,或