欧易

欧易(OKX)

国内用户最喜爱的合约交易所

火币

火币(HTX )

全球知名的比特币交易所

币安

币安(Binance)

全球用户最多的交易所

AI退潮,云计算兜底

时间:2022-08-27 15:35:39 | 浏览:629

AI行业又一次走到了十字路口。高昂的算力成本,利如纸薄的定制化商业模式,让AI公司集体深陷「负利润」的窘境。企业往往寄希望于AI的能力,实现数字化跃迁,但作为新一代基础设施,AI行业本身也遭遇了新的难题:算法从研发到落地部署都需要巨额成本的

AI行业又一次走到了十字路口。高昂的算力成本,利如纸薄的定制化商业模式,让AI公司集体深陷「负利润」的窘境。

企业往往寄希望于AI的能力,实现数字化跃迁,但作为新一代基础设施,AI行业本身也遭遇了新的难题:算法从研发到落地部署都需要巨额成本的投入,且大量的算法在应用落地上并不顺利。

如果从源头来看,云计算或许就是一剂良药,因为它能提供更低成本的算力和低门槛的开发服务,算法研发能力不足的企业还能直接在云上调用云厂商提供的算法,无需重复造轮子。

作为知名的市场分析机构,Gartner早早嗅到了这一趋势,他们从2020年就开始发布《云AI开发者服务关键能力报告》,在Gartner看来,AI与云的结合将愈加密切,AI云服务的能力也将成为AI产业的重要指标。

令人欣慰的是,中国企业已经压中了这一趋势,在今年的报告里,阿里语言AI技术高居全球第二,超越亚马逊AWS、微软等企业,正式进入世界第一梯队。

也正因如此,AI行业的前景依旧被广泛看好。Gartner报告提到,到2025年,70%的新应用程序将集成AI模型,而云AI服务能降低AI应用的开发门槛。这意味着云计算将成为阵痛期AI的最大变量。

给AI兜底的,为什么会是云?

AI商业化面前的两座大山:算力成本、项目成本

早在2017年,学术界和工业界在最具影响力的AI顶会CVPR上就对深度学习的问题展开了激烈的讨论。

讨论的焦点在于,深度学习的“大数据+大算力”范式需要巨大的成本支撑,这必然成为AI商业化的最大阻力。

“深度学习确实在语音、图像识别等数据中,比传统的AI方法更精准,这也是它成为引领第三波AI浪潮的关键,只不过深度学习是把双刃剑,它对燃料(算力、数据、能耗)的消耗,尤其是对算力的需求,远超传统方法。好比以前只吃两个馒头就能活下去,现在为了活得更好,却又受到食材的限制,只能选择天天吃昂贵的和牛。虽然更有营养,但这显然不可持续。”多位AI专家告诉雷峰网。

由于AI的计算成本和能耗成本一直居高不下,在不少注重效益的研究者眼里,AI深度学习一度成了野蛮和暴力的代名词。

2012年,谷歌利用16000块芯片,让AI观看数百万段YouTube视频来识别出猫,即便如此仍错误百出,还不如人类眼睛的一瞥高效。

2016年,AlphaGo击败围棋冠军李世石的人机大战中,AlphaGo每局棋需消耗约100万瓦的电能。相比之下,人脑消耗的功率仅20瓦,只有AlphaGo的5万分之一。

2018年之后,Transformer以及Bert等催生了预训练大模型的诞生,虽然让AI的性能变得更强,但所需的算力也大幅攀升。专门搭建一个这样的集群,对于大部分中小企业来说是难以承受的。

「算力」的供不应求,让其成为整个AI领域的稀缺资源。这也是不少学术界AI大牛纷纷涌入谷歌、微软、阿里等大型科技企业的主要原因,这类企业拥有丰富的业务场景,且有近乎取之不尽的算力资源。

AI所面临的问题还不仅于此,在商业落地过程中:企业不得不为每一个场景定制专属解决方案,这无形中增加了企业的开发成本,利润也因此被压缩。

早期的创业公司都迷信于“研发SDK,先标准化,再规模化,薄利多销,以量取胜”的商业设想。但现实很骨感,当AI公司们拿着SDK冲进行业里才发现,习惯了重型定制化贴身服务的B端客户们,需要的不是单个的开发包,也不具备集成SDK的能力,他们需要的是一套定制化的解决方案。一套SDK包打天下的梦想就此破灭。

SDK走天下梦碎后,AI公司们开始从轻变重,走高度定制化解决方案的路子。但充满个性化定制的项目制模式,极易让企业滑进亏损的漩涡——获客周期长、实施成本高、重人力交付……成本的高企导致利润微薄,甚至一不小心做得越多,亏得越多。

标准化美梦易碎,定制化困局难解,AI企业在商业落地上左右为难。

事实证明,由算力成本和项目成本制造的两条后腿,正在让AI步履蹒跚。

而要卸下这两条后腿,就要打破固有思路,走上一条新的道路。专家们向雷峰网分析道,顶尖高校和头部科技公司现在的探索方向就是:从基础理论层面,用创新算法让AI本身变得更精益、更聪明;在工程层面,则需要让AI研发的成本变得更低。

云计算,为什么是解开“AI成本困局”的良药

毫无疑问,AI的成本问题,算力是最大的症结之一,也是破局的最大突破口。

通过算力集群的规模化,降低单位算力成本,是一条清晰的、具有一定可行性的道路。

在早期,AI所需算力并不高,CPU足以应对。但随着深度学习时代的到来,高质量的AI算法背后往往有惊人的数据量,此时训练所需的数据,规模已远超当年,更“强悍”的GPU逐渐登上历史舞台,成为AI算力的主流。

而当深度学习逐渐加深,模型的规模越来越大,单个GPU已无法满足算力。这时候,GPU并行的算力集群就显得尤为重要。大规模的算力集群,不仅能有效降低GPU采购成本,还能通过集群优势提升计算性能。

但此时新的问题又浮现了:有资源≠天然就用得好资源。如果企业没有合理高效的资源管理,GPU并行的算力集群自身属性再强,也无法自动锻造出优质AI大模型,更无从承载一个体验尚佳的AI应用。企业如今所面对的AI算力困境,包含着众多琐碎痛点:

如果没有算力线性扩展能力,100台机器可能还比不上1台机器的性能,大量的时间就会消耗在非计算开销里。

如果没有提升资源利用率的能力,昂贵的GPU集群很容易利用率不足10%。

业务发展速度难以预测,项目来了需要快速投入,等线下购买到资源,很容易错过机会窗口。

GPU卡故障率高,企业要腾出手来处理IaaS运维等苦活、累活。

GPU几乎半年更新一代,如果随时更换成最新型号,成本居高不下,旧卡又会被闲置。

此时,云上开发AI这一方案被摆上桌面,云计算本身具有的弹性、共享性和互通性等特性正与这些痛点匹配。企业可以借助云计算随时随地按需灵活扩缩容,进而提升算力效率、降低AI研发成本,基础设施层的运维等问题也可以交由更专业的云厂商处理。

这让企业在AI领域模型越演进越复杂,算力需求越来越强的大背景下,可以扬长避短,充分利用市场上已有的技术红利去自我赋能,提升自身业务迭代效率。

以阿里云为代表的国内互联网云厂商,早已提前布局,并将这一系列技术对外服务。

阿里云张北数据中心,可容纳百万台服务器

值得一提的是,不同于AI独角兽们专注to B、to G,这批提供云AI服务的互联网云巨头,自身往往拥有海量的场景业务,可以使算力集群得到高饱和使用,分摊GPU的折旧成本,从而避免GPU集群算力闲置的问题。

这一做法,与谷歌的案例有异曲同工之妙。谷歌前CEO施密特曾谈到,谷歌搜索之所以能在竞争中占有优势,关键因素之一在于成本低。

“Google的运营成本只有微软和雅虎的几分之一,一次搜索服务的成本只有零点几美分。节省下来的钱,Google可以购买更多的服务器、提升运算性能,如此一来,在与竞争对手相同的单位价格下,Google可用更多的硬件和算法,实现更好的搜索质量。”

真正一流的技术和科技公司,最先应该做的事是利用技术实现自身的降本增效,只有把生产要素的成本降下来,才能做到真正意义上的进入行业。

这种通过降低自身生产成本,提升计算资源的利用效率,把边际效应最大化,用最低的成本,走向规模化应用,这是科技产业落地发展的最佳路径。

除了算力问题,云AI服务也可以有效降低AI应用的开发门槛。以阿里为例,其机器学习平台PAI、达摩院研发的基础算法模型以及各种训练的加速框架等,从低门槛、全链路角度出发,高效满足了AI算法的开发需求。

云厂商扛起AI产业化重担

跳出技术层面,在商业层面,云计算也在帮助AI产业加速破局。

目前国内AI产业主要有三条演进路径,从项目制出发:一条是最难获取高利润的多行业拓展模式,为了快速铺大摊子、做大规模,或者寻求业务突破而进入到金融、医疗、零售等数个领域,多线作战;一条是专注于一个垂直行业,把方案和服务做深做透,进而寻求在某一领域里实现平台化;还有一条是先聚焦于算法的打磨,做好算法的产品化,再依托云平台将算法对外服务,并用云平台的基础设施能力帮助企业研发算法。

国内AI产业演进的三条路径

而以阿里云为代表的头部互联网云厂商,在AI领域正朝着最良性的第三条道路迈进。

这种模式的好处在于,基于云平台的底座,不仅可以免去大部分本地化部署的枷锁,还能提供低成本的自研算法研发,快速为算法研发能力弱的企业服务,例如达摩院研发的视觉、语音、NLP等算法就在阿里云上对外服务。同时,云上的计算、存储、网络、机器学习平台等还能为具备算法研发能力的企业提供AI研发和落地的全链路支持。

这条将云与AI完美结合的路径,已经初有成效。以毫末智行为例,这家公司将算法训练任务放到阿里云上,利用后者的对象存储OSS和小文件存储CPFS,可实现海量数据冷热分层存储和高效的数据流通,基于弹性GPU实例在机器学习平台PAI上进行云上分布式模型训练,吞吐性能提升110%,模型成熟度在短时间内大幅提高。据介绍,这样的训练效率最高可提升70%,整体成本降低约20%。

过去十几年里,云计算凭借在算力成本和商业上的双重优势,以DNA复制般的速度进入到各行各业,如今,其在通用计算领域中已被验证过的价值正在被复制到AI领域,助力AI冲破落地瓶颈,实现万千普惠。

Gartner也毫不掩饰对这一趋势的预判,其最新的AI云服务报告指出,到2025年,人工智能软件市场规模将达到1348亿美元,而云AI服务是其中不可或缺的核心推力之一。

事实上,回顾半个多世纪里人工智能产业一路走来的潮起潮落,每一次低谷崛起都伴随着某一新变量带来的突破。如今,云计算正在成为眼下被寄予厚望的最大变量,这一次,将AI产业推向正轨的责任被使命般地交到了云厂商的肩上。雷峰网

相关资讯

云计算雾计算、边缘计算傻傻分不清?

你是不是也有过标题这样的困惑?云计算已经够让你理不明白了,这时候有人再来问你一嘴雾计算,霾计算又是啥。这下你彻底蒙圈了,许久无语凝噎。今天这篇文章,来给你理理:云(cloud)到底是个什么东西?

计算是什么意思(云计算通俗易懂的概念)

云计算(cloud computing):云计算是一种将可伸缩、弹性、共享的物理和虚拟资源池以按需自服务的方式供应和管理,并且提供网络访问的模式。——《信息技术 云计算 概念与词汇》用通俗一点的语言来解释,就是针对本地的计算量较大的任务,可。

一文了解边缘计算与云计算

公有云计算平台使企业能够使用全球服务器补充其私有数据中心,将基础设施扩展到任何位置,并根据自身需求扩展和缩减计算资源。这些公私混合云为企业计算应用提供了前所未有的灵活性、价值和安全性。但在全球各地实时运行的AI应用可能需要巨大的本地处理能力。

一文快速读懂云计算

一.什么是云计算云计算(cloud computing)是分布式计算的一种,指的是通过网络“云”将巨大的数据计算处理程序分解成无数个小程序,然后,通过多部服务器组成的系统进行处理和分析这些小程序得到结果并返回给用户。云计算早期,简单地说,就

云计算入门必备 | 附学习资料链接

它有五大关键特征:按需自助服务(on-demand self-service)、泛在网络接入(ubiquitous network access)、与位置无关的资。云计算是通过Internet以服务的方式提供动态可伸缩的虚拟化资源的计算模式。

一篇漫画,看懂云计算

“云计算”这个词相信大家都非常熟悉作为目前最热门的科技概念之一它频繁地出现媒体的报道中专家们也经常将它挂在嘴边为它摇旗呐喊那么,究竟什么是云计算呢。今天这篇漫画科普小短文我们就来揭开云计算的神。相比传统计算,它有什么特别之处。

漫话:什么是云计算?

两个人相安无事,突然女朋友好像看弹幕有什么东西不理解了,于是问我:什么是云计算互联网自1960年开始兴起,最初主要用于军方、大型企业等之间的纯文字电子邮件或新闻集群组服务。直到1990年才开始进入。周末在家,我在看书,女朋友在一旁看游戏直播。

什么是云计算?看这篇就够了

云,又称云端,指无数的大型机房或者大型数据中心。二、为什么需要云?1)从用户的角度来讲:传统应用的需求日益复杂,比如需要支持更多的用户,需要更强的计算能力等,为满足这些日益增长的需求,企业不得不购买更多的硬件设备(比如服务器、

什么是云计算?带你全方位走进“云”世界

近年来,在社会和企业的数字化转型的浪潮下,云计算产业呈现稳健发展的良好态势。随着云计算和大数据应用的普及,越来越多的企业开始“拥抱”云计算服务。那到底云计算是什么,云计算为何如此重要,下文就带你全方位了解云计算。

预见2022 | 云计算:这是最好的时代,也是最有挑战的时代

“历经十多年发展,在政府大力支持和各方共同努力下,我国云计算产业迎来了繁荣发展的良好局面,在市场规模、关键技术、行业应用等方面均取得了优异成绩。无论是互联网领域还是政务、金融、工业、交通等传统行业,均把上云作为信息化建设的重要工作。

什么是云计算

当我们听到云计算这个词,容易联想到生活中经常用到“百度云盘““网易云音乐”这样的产品,这里的云似乎代表网络上无尽的资源,同时代表着存储和分发。没错,作为分布式的服务系统,云上的资源可以无限制地扩充,它的总容量可以看作是无尽的。同时存储和分

1分钟知识锦囊 | 云计算是怎么回事?

如果你对近期的商业世界还有什么疑问,欢迎给我们留言,锦囊负责找高手为你解答。1分钟知识锦囊是36氪的日更问答新栏目,旨在每天以一分钟为限,快问快答一个重要的商业问题。今天我们解答的是云计算的问题。今日锦囊答主:陈晓杰 Kyligence 高。

国企云计算厂商增长迅猛,但私企云下滑

中国移动的移动云,增长了234%从图中可以得知,移动云主要做的是央企国。我是卢松松,点点上面的头像,欢迎关注我哦。,但国企的天翼云、移动云、联通云却翻倍增长。从2021年开始,大家所熟知的阿里云、腾讯云、百度云就开始出现了不同程度的业绩下滑。

中国云计算为数字经济深度赋能

智观天下图片来源:新华社■ 中国经济时报记者 赵珊全球进入数字经济时代,政企进入数字化转型阶段,云计算作为新兴信息技术之一,支撑着数字经济发展,也是产业升级的重要基石。中国是全球第二大云服务市场,也是增速最快的市场。相关数据显示,2021年

“云计算”是什么?它到底有什么用?

近年来,“云计算”(英文cloud computing)的概念在科技界,尤其是电子圈非常火爆。那么,云计算是什么。下面就简要地回答这些问题。云计算已经成为当今的热词,同时也日益成为新时代科技的象征。云计算(图片源自网络)。

友情链接

网址导航 SEO域名抢注宝宝起名网妈妈知道币圈西瓜品种科普网苏泊尔豆浆机评测网梨子水果网苏宁易购股票星巴克咖啡会员日上饶新闻资讯网小提琴培训网小程序游戏开发网黄明昊歌迷网悉尼旅游网乳胶漆品牌网天津旅游网李宁股票资讯网ai绘画资讯网福建武夷山资讯网
大数据信息网-大数据信息化时代、大数据分析师、十大物联网云平台、云计算运维工程师、ai数据标注平台、ai智能机器人、人工智能训练平台、计算机运维工程师、人工智能训练师、ai智能绘画软件、免费大数据分析网站。
大数据信息网 liakou.cn ©2022-2028版权所有